The impressive capabilities of the mammalian brain–ranging from perception, pattern recognition and memory formation to decision making and motor activity control–have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anoma...
Read more
To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated sever...
Read more
The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modul...
Read more
We describe an algorithm for designing the sequence of one or more interacting nucleic acid strands intended to adopt a target secondary structure at equilibrium. Sequence design is formulated as an optimization problem with the goal of reducing the ensemble defect below a user-specified stop ...
Read more
The Nucleic Acid Package (NUPACK) is a growing software suite for the analysis and design of nucleic acid systems. The NUPACK web server (http://www.nupack.org) currently enables: Analysis: thermodynamic analysis of dilute solutions of interacting nucleic acid strands. Design: sequence design ...
Read more
In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study inter...
Read more
Cancer cells are characterized by genetic mutations that deregulate cell proliferation and suppress cell death. To arrest the uncontrolled replication of malignant cells, conventional chemotherapies systemically disrupt cell division, causing diverse and often severe side effects as a result o...
Read more
The past three decades have witnessed steady growth in our ability to harness DNA branched junctions as building blocks for programmable self-assembly of diverse supramolecular architectures. The DNA-origami method, which exploits the availability of long DNA sequences to template sophisticate...
Read more
Tensegrity, or tensional integrity, is a property of a structure indicating a reliance on a balance between components that are either in pure compression or pure tension for stability. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefo...
Read more
The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stra...
Read more
Molecular programming aims to systematically engineer molecular and chemical systems of autonomous function and ever-increasing complexity. A key goal is to develop embedded control circuitry within a chemical system to direct molecular events. Here we show that systems of DNA molecules can be...
Read more
A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermi...
Read more
Designs for DNA origami have previously been limited by the size of the available single-stranded genomes for scaffolds. Here we present a straightforward method for the production of scaffold strands having various lengths, using polymerase chain reaction amplification followed by strand sepa...
Read more
DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, shor...
Read more
DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long ‘scaffold’ strand can be employed to template the assembly of hundreds of oligonucleotid...
Read more
We have approached the problem of reverse-engineering the flight control mechanism of the fruit fly by studying the dynamics of the responses to a visual stimulus during takeoff. Building upon a prior framework [G. Card and M. Dickinson, J. Exp. Biol., vol. 211, pp. 341-353, 2008], we seek to ...
Read more
Combined heat and chemical denaturation of double-stranded DNA scaffold strands in the presence of staple strands, followed by a sudden temperature drop and then stepwise dialysis to remove the chemical denaturant, leads to self-assembly of two distinct DNA-origami structures.
We study the dynamic stability of low Reynolds number swimming near a plane wall from a control-theoretic viewpoint. We consider a special class of swimmers having a constant shape, focus on steady motion parallel to the wall, and derive conditions under which it is passively stable without se...
Read more
Molecular self-assembly offers a ‘bottom-up’ route to fabrication with subnanometre precision of complex structures from simple components. DNA has proved to be a versatile building block for programmable construction of such objects, including two-dimensional crystals, nanotubes, and three-di...
Read more
Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. ...
Read more
Gene regulatory interactions are context dependent, active in some cellular states but not in others. Stochastic fluctuations, or ‘noise’, in gene expression propagate through active, but not inactive, regulatory links. Thus, correlations in gene expression noise could provide a noninvasive me...
Read more
Allosteric modulation of catalysis kinetics is prevalent in proteins and has been rationally designed for ribozymes. Here, we present an allosteric DNA molecule that, in its active configuration, catalyzes a noncovalent DNA reaction. The catalytic activity is designed to be modulated by the re...
Read more
Graphene’s remarkable mechanical and electrical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive material for novel computing devices. We report the development of a nonvolatile memory element based on graphene break junctions. Ou...
Read more
In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largel...
Read more
Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, i...
Read more