Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sou...
Read more
Most human transcripts are alternatively spliced, and many disease-causing mutations affect RNA splicing. Toward better modeling the sequence determinants of alternative splicing, we measured the splicing patterns of over two million (M) synthetic mini-genes, which include degenerate subsequen...
Read more
Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sou...
Read more
Most human transcripts are alternatively spliced, and many disease-causing mutations affect RNA splicing. Toward better modeling the sequence determinants of alternative splicing, we measured the splicing patterns of over two million (M) synthetic mini-genes, which include degenerate subsequen...
Read more
We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired ...
Read more
A small and compact DNA cube with zeptoliter volume is constructed by means of a generalized DNA brick concept using short synthetic oligonucleotides with varying lengths. By mimicking design principles from the DNA origami technique, the DNA cube offers higher stability and assembly yields co...
Read more
Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demons...
Read more
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data ...
Read more
Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system gr...
Read more
A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative ‘design-build-test’ cycle, whereby the parts and connections...
Read more
Nanodiscs constitute a tool for the solubilization of membrane proteins in a lipid bilayer, thus offering a near-native membrane environment. Many membrane proteins interact with other membrane proteins; however, the co-reconstitution of multiple membrane proteins in a single nanodisc is a ran...
Read more
The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to sc...
Read more
Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demons...
Read more
A small and compact DNA cube with zeptoliter volume is constructed by means of a generalized DNA brick concept using short synthetic oligonucleotides with varying lengths. By mimicking design principles from the DNA origami technique, the DNA cube offers higher stability and assembly yields co...
Read more
While current experimental demonstrations have been limited to small computational tasks, DNA strand displacement systems (DSD systems)[25] hold promise for sophisticated information processing within chemical or biological environments. A DSD system encodes …
Tile-based self-assembly and chemical reaction networks provide two well-studied models of scalable DNA-based computation. Although tile self-assembly provides a powerful framework for describing Turing-universal self-assembling systems, assembly logic in tile …
DNA nanotechnology is an emerging field which utilizes the unique structural properties of nucleic acids in order to build nanoscale devices, such as logic gates, motors, walkers, and algorithmic structures. Predicting the structure and interactions of a DNA device requires …
Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (...
Read more
Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general pla...
Read more
Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit impl...
Read more
While biology demonstrates that molecules can reliably transfer information and compute, design principles for implementing complex molecular computations in vitro are still being developed. In electronic computers, large-scale computation is made possible by redundancy, which allows errors to...
Read more
A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative ‘design-build-test’ cycle, whereby the parts and connections...
Read more
A secret sharing scheme is a method to store information securely and reliably. Particularly, in a threshold secret sharing scheme, a secret is encoded into n shares, such that any set of at least t 1 shares suffice to decode the secret, and any set of at most t 2<; t 1 shares reveal …