The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the e...
Read more
Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shap...
Read more
In distributed storage, a file is stored in a set of nodes and protected by erasure-correcting codes. Regenerating code is a type of code with two properties: first, it can reconstruct the entire file in the presence of any r node erasures for some specified integer r; second, it can …
Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recogni...
Read more
The field of DNA nanotechnology has harnessed the programmability of DNA base pairing to direct single-stranded DNAs (ssDNAs) to assemble into desired 3D structures. Here, we show the ability to express ssDNAs in Escherichia coli (32-205 nt), which can form structures in vivo or be purified fo...
Read more
An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthet...
Read more
The pursuit of circuits and metabolic pathways of increasing complexity and robustness in synthetic biology will require engineering new regulatory tools. Feedback control based on relevant molecules, including toxic intermediates and environmental signals, would enable genetic circuits to rea...
Read more
The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the e...
Read more
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whethe...
Read more
Scalable production of DNA nanostructures remains a substantial obstacle to realizing new applications of DNA nanotechnology. Typical DNA nanostructures comprise hundreds of DNA oligonucleotide strands, where each unique strand requires a separate synthesis step. New design methods that reduce...
Read more
Demand for data storage is growing exponentially, but the capacity of existing storage media is not keeping up. Using DNA to archive data is an attractive possibility because it is extremely dense, with a raw limit of 1 exabyte/mm 3 (109 GB/mm 3), and long-lasting, with …
This paper studies the system-level reliability of 16nm MLC NAND flash memories under total ionizing dose (TID) effect. Errors that occur in the parts under TID effect are characterized at multiple levels. Results show that faithful data recovery only lasts until 9k rad. Data errors observed i...
Read more
Counting molecules in complexes is challenging, even with super-resolution microscopy. Here, we use the programmable and specific binding of dye-labeled DNA probes to count integer numbers of targets. This method, called quantitative points accumulation in nanoscale topography (qPAINT), works ...
Read more
DNA nanostructures are versatile templates for low cost, high resolution nanofabrication. However, due to the limited chemical stability of pure DNA structures, their applications in nanofabrication have long been limited to low temperature processes or solution phase reactions. Here, we demon...
Read more
The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of ...
Read more
Maximum distance separable (MDS) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r node erasures by accessing (reading) all the remaining …
DNA nanostructures are versatile templates for low cost, high resolution nanofabrication. However, due to the limited chemical stability of pure DNA structures, their applications in nanofabrication have long been limited to low temperature processes or solution phase reactions. Here, we demon...
Read more
Nature has developed striking light-powered proteins such as bacteriorhodopsin, which can convert light energy into conformational changes for biological functions. Such natural machines are a great source of inspiration for creation of their synthetic analogues. However, synthetic molecular m...
Read more
In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which s...
Read more
DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacemen...
Read more
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data ...
Read more
DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, ...
Read more
Nanodiscs constitute a tool for the solubilization of membrane proteins in a lipid bilayer, thus offering a near-native membrane environment. Many membrane proteins interact with other membrane proteins; however, the co-reconstitution of multiple membrane proteins in a single nanodisc is a ran...
Read more
Synthetic oligonucleotides are the main cost factor for studies in DNA nanotechnology, genetics and synthetic biology, which all require thousands of these at high quality. Inexpensive chip-synthesized oligonucleotide libraries can contain hundreds of thousands of distinct sequences, however o...
Read more
Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sou...
Read more